Instruction Manual
 Model 2116-28\#-1200 Block Downconverter

May 2023, Rev. 0

Data, drawings, and other material contained herein are proprietary to Cross Technologies, Inc., but may be reproduced or duplicated without the prior permission of Cross Technologies, Inc. for purposes of operating the equipment. Printed in USA.

When ordering parts from Cross Technologies, Inc., be sure to include the equipment model number, equipment serial number, and a description of the part.

INSTRUCTION MANUAL

MODEL 2116-28\#-1200 Downconverter

TABLE OF CONTENTS
Warranty PAGE 2
1.0 General 3
1.1 Equipment Description 3
1.2 Technical Characteristics 4
2.0 Installation 6
2.1 Mechanical 6
2.2 Rear Inputs and Outputs 7
2.3 Front Panel Indicators 7
2.4 Operation 8
3.0 Environmental Use Information 9

WARRANTY - The following warranty applies to all Cross Technologies, Inc. products.
All Cross Technologies, Inc. products are warranted against defective materials and workmanship for a period of one year after shipment to customer. Cross Technologies, Inc.'s obligation under this warranty is limited to repairing or, at Cross Technologies, Inc.'s option, replacing parts, subassemblies, or entire assemblies. Cross Technologies, Inc. shall not be liable for any special, indirect, or consequential damages. This warranty does not cover parts or equipment which have been subject to misuse, negligence, or accident by the customer during use. All shipping costs for warranty repairs will be prepaid by the customer. There are not other warranties, express or implied, except as stated herein.

CROSS TECHNOLOGIES, INC. \sqcup

6170 Shiloh Road
Alpharetta, Georgia 30005
(770) 886-8005
FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com

MODEL 2116-28\#-1200 Downconverter

1.0 General

1.1 Equipment Description - The 2116-28\#-1200 Downconverter converts $2.0-2.8 \mathrm{GHz}$ to 1.2 ± 0.40 GHz with low phase noise and flat frequency response. Dual conversion frequency translation is via 6.20 GHz and 5.00 GHz local oscillators. Front panel LEDs provide indication of DC Power, External 10 MHz , and PLL Alarm. The gain is +0 dB . Connectors are Type N female for the RF and BNC female for the L-Band and external reference input and reference output. A three-way switch controls which 10 MHz reference is being used. In the INT position, the internal reference is used, in the EXT position, the external reference is used, and in the AUTO position, the internal reference is used unless a $3 \mathrm{dBm} \pm 3 \mathrm{~dB}, 10 \mathrm{MHz}$ reference signal is connected to the external reference input. The 2116 is powered by a $100-240 \pm 10 \%$ VAC power supply, and mounted in a $13 / 4$ " X 19 " X 14 " rack mount chassis.

FRONT PANEL

REAR PANEL
FIGURE 1.1 Model 2116-28\#-1200 Front and Rear Panels

FIGURE 1.2 Model 2116-28\#-1200 Downconverter Block Diagram

1.2 Technical Characteristics

TABLE 1.0 2116-28\#-1200 Downconverter Specifications*

Input Characteristics (RF)
Impedance/Return Loss
Frequency
Noise Figure, max.
Input Level
Input 1dB Compression
Output Characteristics (L-Band)
Impedance/Return Loss
Frequency
Output Level Range
Output 1 dB compression
Channel Characteristics
Gain
Image Rejection
Spurious, In Band
Spurious, Out of Band
Intermodulation
Frequency Response
Frequency Sense
LO Characteristics
LO Frequency
Frequency Accuracy
10 MHz Level

Controls, Indicators

INT/AUTO/EXT Switch
Power
PLL Alarm
Ext 10 MHz

Other

RF Connector
L-Band Connector
10 MHz Connectors
Alarm Connector
Size
Power
$50 \Omega / 14 \mathrm{~dB}$ (See TABLE 2.2 for connector options)
2.0 to 2.8 GHz

30 dB , max. gain
-25 to -5 dBm
+5 dBm , at Fc
$50 \Omega / 14 \mathrm{~dB}$
$1.2 \pm 0.400 \mathrm{GHz}$
-25 to -5 dBm , at Fc
+5 dBm at Fc
$+0 \mathrm{~dB} \pm 2 \mathrm{~dB}$ at Fc
$>60 \mathrm{~dB}, \mathrm{~min}$.
$<-45 \mathrm{dBc}$ in band, -5 dBm out;
$<-50 \mathrm{dBm}(0.4-0.8 \mathrm{GHz}$ and $1.6-2.5 \mathrm{GHz}$ Out)
$<-50 \mathrm{dBc}$ for two carriers at $\mathrm{Fc} \pm 2 \mathrm{MHz}$, each at -15 dBm out
$\pm 2.0 \mathrm{~dB}, 1.2 \pm 0.40 \mathrm{GHz}$ out; $\pm 0.5 \mathrm{~dB}, 40 \mathrm{MHz} \mathrm{BW}$
Non-Inverting
6.20 GHz and 5.00 GHz
$\pm 0.01 \mathrm{ppm}$ max over temp internal reference,
$3 \mathrm{dBm}, \pm 3 \mathrm{~dB}, 75 \mathrm{ohms}$, External In or 10 MHz Out

Selects internal or external 10 MHz (rear panel DP3T switch) Green LED
Red LED, External contact closure
Yellow LED, Indicates Ext 10 MHz reference selected

N-type (female), 50Ω
N-type (female), 50Ω
BNC (female), $50 \Omega / 75 \Omega$
DB9 - NO or NC contact closure on Alarm
19 inch standard chassis, 1.7 " high X 14.0 " deep
$100-240 \pm 10 \%$ VAC, $47-63 \mathrm{~Hz}$, 45 watts max.

See TABLE 2.2

[^0]
2.0 Installation

2.1 Mechanical - The 2116-28\#-1200 consists of one RF PCB housed in a 1 RU ($13 / 4$ inch high) by 14 inch deep chassis. A switching $, \pm 12,+24,+5$ VDC power supply provides power for the assemblies. The 2116-28\#1200 can be secured to a rack using the 4 holes on the front panel. Figure 2.0 shows how the $2116-28 \#-1200$ is assembled.

FIGURE 2.0 2116-28\#-1200 Mechanical Assembly
2.2 Rear Panel Input/Output Signals - Figure 2.1 shows the input and output connectors on the rear panel.

FIGURE 2.1 2116-28\#-1200 Rear Panel I/O's

TABLE 2.1 J11 Pinouts (DB9)	
Pin	Function
1	Not Used
2	Not Used
3	Not Used
4	Not Used
5	GND
6	Alarm Relay: Common
7	Alarm Relay: Normally Open
8	Not Used
9	Alarm Relay: Normally Closed

TABLE 2.2 Connector Options

L-Band	RF
N-type 50Ω (STD)	N-type 50Ω (STD)
75Ω BNC	N-type 50Ω
50Ω BNC	50Ω SMA
50Ω SMA	50Ω SMA

2.3 Front Panel Indicators - The following are the front panel indicators.

FIGURE 2.2 2116-28\#-1200 Front Panel Controls and Indicators

2.4 Installation / Operation

2.4.1 Installing and Operating the 2116-28\#-1200 Downconverter

1.) Connect a -25 dBm to -5 dBm signal to RF INPUT, J101 (Figure 2.1).
2.) Connect the L-BAND OUTPUT, J1, to the external equipment.
3.) Connect $100-240 \pm 10 \%$ VAC, $47-63 \mathrm{~Hz}$ to AC connector on the back panel.
4.) Be sure DS1 (green, DC Power) is on and DS2 (red, Alarm) is off (Figure 2.2).
5.) Select either INT (for internal 10MHz ref), AUTO (for internal 10MHz ref UNLESS a external $10 \mathrm{MHz}, 0 \mathrm{dBm}$ signal is connected to J 2), or EXT (for external $10 \mathrm{MHz}, 0 \mathrm{dBm}$ ref that is inserted at J 2) on rear panel switch S 1 (Figure 2.1).
6.) If EXT is selected or AUTO is selected and there is a $10 \mathrm{MHz}, 0 \mathrm{dBm}$ signal at J 2 , check that DS3 (yellow, Ext 10MHZ) is on (Figure 2.2).
7.) Check that a $10 \mathrm{MHz}, 0 \mathrm{dBm} \pm 3 \mathrm{~dB}$ signal is present at the 10 MHZ REF OUTPUT (J8) (Figure 2.1).
8.) AC Fuse - The fuse is a $5 \mathrm{~mm} \times 20 \mathrm{~mm}, 2 \mathrm{amp}$ slow blow (Type T) and is inserted in the far slot in the drawer below the AC input as shown in Figure 2.3. There is a spare fuse in the near slot. If a fuse continues to open, the power supply is most likely defective.

FIGURE 2.3 Fuse Location and Spare Fuse

3.0 Environmental Use Information

A. Rack-Mounting - To mount this equipment in a rack, please refer to the installation instructions located in the user manual furnished by the manufacturer of your equipment rack.
B. Mechanical Loading - Mounting of equipment in a rack should be such that a hazardous condition does not exist due to uneven weight distribution.
C. Elevated Operating Ambient Temperature - If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack may be greater than room ambient temperature. Therefore, consideration should be given to Tmra.
D. Reduced Air Flow - Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised. Additional space between unit may be required.
E. Circuit Overloading - Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of circuits could have on over current protection and supply wiring. Appropriate consideration of equipment name plate rating should be used, when addressing this concern.
F. Reliable Earthing - Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connection to the Branch (use of power strips).
G. Top Cover - There are no serviceable parts inside the product so, the Top Cover should not be removed. If the Top Cover is removed the ground strap and associated screw MUST BE REINSTALLED prior to Top Cover screw replacement. FAILURE TO DO this may cause INGRESS and/or EGRESS emission problems.

Cross technologies, inc.

6170 Shiloh Road
Alpharetta, Georgia 30005
(770) 886-8005
FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com

Printed in USA

[^0]: ${ }^{*}+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$; Specifications subject to change without notice.

