INSTRUCTION MANUAL

MODEL 2088-24 UPCONVERTER

Data, drawings, and other material contained herein are proprietary to Cross Technologies, Inc., but may be reproduced or duplicated without the prior permission of Cross Technologies, Inc. for normal operation related purposes.

When ordering parts from Cross Technologies, Inc., be sure to include the equipment model number, equipment serial number, and a description of the part.

First Edition, December 2002

CROSS TECHNOLOGIES, INC.
6170 SHILOH ROAD
ALPHARETTA, GEORGIA 30005
(770) 886-8005

FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com E-MAIL info@crosstechnologies.com

INSTRUCTION MANUAL MODEL 2088-24 UPCONVERTER

TABLE OF CONTENTS PAGE
Warranty 2
1.0 General 3
1.1 Equipment Description 3
1.2 Technical Characteristics 4
2.0 Installation 5
2.1 Mechanical 5
2.2 Rear I/O's, Level Control 6
2.3 Front Panel Controls, Indicators 62.4 Operation7

WARRANTY - The following warranty applies to all Cross Technologies, Inc. products.

All Cross Technologies, Inc. products are warranted against defective materials and workmanship for a period of one year after shipment to customer. Cross Technologies, Inc.'s obligation under this warranty is limited to repairing or, at Cross Technologies, Inc.'s option, replacing parts, subassemblies, or entire assemblies. Cross Technologies, Inc. shall not be liable for any special, indirect, or consequential damages. This warranty does not cover parts or equipment which have been subject to misuse, negligence, or accident by the customer during use. All shipping costs for warranty repairs will be prepaid by the customer. There are not other warranties, express or implied, except as stated herein.

CROSS TECHNOLOGIES, INC.
 6170 SHILOH ROAD
 ALPHARETTA, GEORGIA 30005

(770) 886-8005

FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com E-MAIL info@crosstechnologies.com

MODEL 2088-24 UPCONVERTER

SECTION 1 GENERAL

1.1 Equipment Description - The 2088-24 Upconverter converts a 70 MHz IF signal to 2.0 to 2.4 GHz with no spectrum inversion, low group delay, and flat frequency response. The 70 MHz IF input is mixed with synthesized local oscillator (LO) signals, first to 700 MHz and finally to 2.0 to 2.4 GHz . The frequency is selected using four front panel BCD switches, and is selectable in 1 MHz increments. The reference oscillator is a 25 MHz internal oscillator. Front panel LEDs light when DC power is applied (green) or when a PLL alarm occurs (red). Gain is selectable to be +10 or 0 dB for -20 and -10 dBm in, respectively. Connectors are SMA female for the RF output and BNC female for the IF input. The 208824 Upconverter is housed in an $13 / 4$ " X 19 " X 14 " deep rack mount chassis.

FIGURE 1.1 Model 2088-24 Front and Rear Panels

FIGURE 1.2 Model 2088-24 Block Diagram

1.2 Technical Characteristics

TABLE 1.0 2088-24 Upconverter SPECIFICATIONS*

Input Characteristics

Impedance/RL
Frequency
Input Level range
Output Characteristics
Impedance/RL
Frequency
Output 1 dB compression
Channel Characteristics
Gain
Spurious Response
Frequency Response
Group Delay, max
Synthesizer Characteristics
Frequency Accuracy
Tuning Steps
Phase Noise ($\mathrm{dBC} / \mathrm{Hz}$)
Controls
Frequency
Gain select
Indicators
DC Power
PLL Alarm
Other
Connectors, IF, RF
Connector, Alarm
Size
Power
$50 \Omega / 18 \mathrm{~dB}$
$70 \pm 10 \mathrm{MHZ}$, minimum
-10 to -20 dBm (for $0,+10 \mathrm{~dB}$ gain, respectively)
$50 \Omega / 12 \mathrm{~dB}$
2.0 to 2.4 GHZ
-5 dBm minimum
+10 or 0 dB (selectable by rear panel switch, for -20 and -10 dBm in, respectively)
$<-45 \mathrm{dBC}$ in band, $<-45 \mathrm{dBC}$ out of band (at $-10 \pm 2 \mathrm{dBm}$ output)
$\pm 1.0 \mathrm{~dB}, \pm 10 \mathrm{MHz}$ increment
$\pm 5 \mathrm{~ns}, \pm 6 \mathrm{MHz} ; \pm 15 \mathrm{~ns}, \pm 10 \mathrm{MHz}$
$\pm 25 \mathrm{kHz}$ max over temp
1.0 MHz
$\leq-75,10 \mathrm{kHz} ; \leq-90,100 \mathrm{kHz} ; \leq-100,1 \mathrm{MHz}$
BCD Switches, adjustable with small blade screwdriver
Rear Panel slide switch selects +10 or 0 dB gain
Green LED
Red LED
BNC, female, SMA, female
Terminal Strip, Open collector to ground (30 ma, max) on alarm
19 inch standard chassis 1.75 "high X 14.0 " deep
90-260 VAC, $47-63 \mathrm{~Hz}, 40$ watts max.
*+10 to +40 degrees C; Specifications subject to change without notice

2.0 Installation

2.1 Mechanical - The 2088-24 consists of two RF Assemblies, and one Controller/LO PCB housed in a 1 RU ($13 / 4$ inch high) by 14 inch deep chassis. A switching, ± 15 VDC power supply provides power for the assemblies. The 2088-24 can be secured to a rack using the 4 holes on the front panel. Figure 2.0 shows how the 2088-24 is assembled.

FIGURE 2.0 2088-24 Mechanical Assembly
2.2 Rear Panel Input/Output Signals and Level Control - Figure 2.1 shows the input and output connectors on the rear panel.

FIGURE 2.1 2088-24 Rear Panel I/Os and Level Control
2.3 Front Panel Controls and Indicators - The following are the front panel controls and indicators.

FIGURE 2.2 2088-24 Front Panel Controls and Indicators

2.4 Installation / Operation

2.4.1 Installing and Operating the 2088-24

1.) Connect a -10 dBm to -20 dBm signal to IF In, J101 (Figure 2.1).
2.) Select $+10(\mathrm{HI})$ for -20 dBm in or $0(\mathrm{LO})$ for -10 dBm in gain with switch S 101 (Figure 2.1).
3.) Connect the RF OUT, J102, to the external equipment (Figure 2.1).
4.) Set BCD switches SW1 to SW4 to the desired output frequency (Figure 2.2).

CAUTION!!! Be sure to set the BCD switches to a valid frequency from 2.000 to 2.400 GHz . If set to a frequency outside this range the LO will tune to either one end of the frequency range or the other but the alarm will NOT turn on.
5.) Connect 90-260 VAC, 47-63 Hz to AC1 on the back panel (Figure 2.1).
5.) Be sure DS1 (green, DC Power) is on and DS2 (red, Alarm) is off (Figure 2.2).
7.) AC Fuse - The fuse is a $5 \mathrm{~mm} X 20 \mathrm{~mm}, 2 \mathrm{amp}$ slow blow (Type T) and is inserted in the far slot in the drawer below the AC input as shown in Figure 2.3. There is a spare fuse in the near slot. If a fuse continues to open, the power supply is most likely defective.
2.4.2 Frequency Setting, SW1 to SW5 - The RF output frequency is selected by setting the BCD switches (SW1 to SW4) using a small blade screwdriver on the front panel to the desired frequency. The frequency displayed on the BCD switches is the desired output frequency with 70 MHz IF center frequency input. There is no muting of the output carrier during frequency selection.
CAUTION!!! Be sure to set the BCD switches to a valid frequency from 2.000 to 2.400 GHz . If set to a frequency outside this range the LO will tune to either one end of the frequency range or the other but the alarm will NOT turn on.

FIGURE 2.3 Fuse Location and Spare Fuse

