Instruction Manual

Model: 2019-41 2019-42 2019-43
Upconverter

March 2011, Rev 0

Data, drawings, and other material contained herein are proprietary to Cross Technologies, Inc., but may be reproduced or duplicated without the prior permission of Cross Technologies, Inc.
for purposes of operating the equipment.
When ordering parts from Cross Technologies, Inc., be sure to include the equipment model number, equipment serial number, and a description of the part.

6170 Shiloh Road
Alpharetta, Georgia 30005
(770) 886-8005

FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com

INSTRUCTION MANUAL
MODEL 2019-4x Upconverter
TABLE OF CONTENTSWarranty1.2 Technical Characteristics
2.0 Installation
2.1 Mechanical
PAGE2
1.0 General 3
1.1 Equipment Description 3
1.3 Monitor \& Control Interface 54
2.2 Rear I/O's 9
2.3 Front Panel Controls, Indicators 108
2.4 Operation 118
2.5 Menu Settings 12
1.4 Environmental Use Information 17

WARRANTY - The following warranty applies to all Cross Technologies, Inc. products.
All Cross Technologies, Inc. products are warranted against defective materials and workmanship for a period of one year after shipment to customer. Cross Technologies, Inc.'s obligation under this warranty is limited to repairing or, at Cross Technologies, Inc.'s option, replacing parts, subassemblies, or entire assemblies. Cross Technologies, Inc. shall not be liable for any special, indirect, or consequential damages. This warranty does not cover parts or equipment which have been subject to misuse, negligence, or accident by the customer during use. All shipping costs for warranty repairs will be prepaid by the customer. There are not other warranties, express or implied, except as stated herein.

6170 Shiloh Road
Alpharetta, Georgia 30005
(770) 886-8005

FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com

2019-4x Upconverter, Four Output Frequencies

1.0 General

1.1 Equipment Description

The 2019-4x Upconverter converts one $70 \pm 18 \mathrm{MHz}$ input signal to four individual frequencies (combined to one output). The output frequency ranges are: 250 to 750 MHz for Model 2019-41; 1650 to 2150 MHz for Model 2019-42 and 950 to 2150 MHz for Model 2009-43. All outputs are tunable in 1 MHz steps. Synthesized local oscillators (LO) provide frequency selection. Multi-function switches select the RF frequencies, gain, and other parameters. Front panel LEDs provide indication of DC power (green), Unit alarm (red), and remote operation (yellow). Variable attenuators for each channel provide a gain range of -10 to +10 dB as adjusted by the front panel multi-function switches. Remote operation allows selection of frequency, mute, and gain of each signal. The LCD will display parameter selection during setup and frequency and gain/mute settings during operation. Connectors are 75 ohm BNC female for IF and the optional external reference input and SMA for the combined four-frequency output. The unit is powered by a $100-240 \pm 10 \%$ VAC power supply, and housed in a $13 / 4$ " X 19" X 16" rack mount chassis.

FRONT PANEL

REAR PANEL

FIGURE 1.1 Model 2019-4x Front and Rear Panels

FIGURE 1.2 Model 2019-4x Upconverter, Block Diagram

1.2 Technical Characteristics

TABLE 1.0 2019-4x Upconverter Specifications*

Input Characteristics (IF)

Impedance/Return Loss
Frequency
Input Level
Output Characteristics (RF)
Impedance/Return Loss Frequency

Output level/carrier
Output 1 dB compression
Carrier Intermod
Carrier Level Variation Mute Level

Channel Characteristics

Gain range (adjustable)
Spurious Response Frequency Response
Group Delay, max
Frequency Sense
Synthesizer Characteristics
Frequency Accuracy
Frequency Step
10 MHz level
$75 \Omega / 18 \mathrm{~dB}$ (see TABLE 2.2 for connector options)
$70 \pm 18 \mathrm{MHZ}$
-25 to -15 dBm
$50 \Omega / 12 \mathrm{~dB}$ (see TABLE 2.2 for connector options)
Model 2019-41; 250 to 750 MHz
Model 2019-42; 1650 to 2150 MHz
Model 2019-43; 950 to 1450 MHz
-30 to -10 dBm
$+5 \mathrm{dBm}$
<-40 dBC, 3 ON, 1 OFF
$\pm 1.5 \mathrm{~dB}, 0.25$ to 0.75 GHz
-40 dBC min, -45 dBC typical
-10 to $+10,1 \mathrm{~dB}$ steps
$<-40 \mathrm{dBC}, 0.25$ to 0.75 GHz (non-intermod related)
$\pm 0.7 \mathrm{~dB}, 36 \mathrm{MHz}$ BW
$0.015 \mathrm{~ns} / \mathrm{MHz}^{2}$ parabolic; $0.03 \mathrm{~ns} / \mathrm{MHz}$ linear; 1 ns ripple
All Four Frequencies Non-inverting
$\pm 1.0 \mathrm{ppm}$ internal reference; external reference optional 1.0 MHz minimum
$3 \mathrm{dBm}, \pm 3 \mathrm{~dB}$ (for option -E)

Phase Noise @ Freq	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz
$\mathrm{dBC} / \mathrm{Hz}$	-70	-70	-80	-95	-110

Controls, Indicators

Power; Alarm; Rem; Mute Green LED; Red LED; Yellow LED; "OFF" on LCD

Remote
Freq/Gain Selection
Other
IF \& $10 \mathrm{MHz} / \mathrm{RF}$ Conn.
Alarm/Remote Connector
Size
Power
RS232C, 9600 baud
Direct readout LCD; multi-function switches or remote selection

75 ohm BNC (female) SMA
DB9 - NO or NC contact closure on Alarm
19 inch, 1RU standard chassis 1.75 " high X 16.0" deep
$100-240 \pm 10 \%$ VAC, $47-63 \mathrm{~Hz}, 45$ watts max

Options

-E
-Q
-W8
Allows ext. 10 MHz ref input, 10 MHz ref can be inserted on the RF in RS-422/RS-485 Remote capability
Ethernet M\&C Remote Interface
Connector options
See TABLE 2.2

* $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$; Specifications subject to change without notice

1.3 Monitor and Control Interface

A) Remote serial interface

Protocol: RS-232C, 9600 baud rate, no parity, 8 data bits, 1 start bit, and 1 stop bit. (RS-232C, RS-422, or RS-485-option -Q)

M\&C Cable Diagram - Cross Technologies Frequency Converters	
Female DB-9	Male DB-9
PC Com Port	2015/16/17 M\&C Port
1	1
$24{ }^{\text {RX }}$	$\xrightarrow{R X} 2$
$3 \longleftarrow$ TX	$\xrightarrow{\text { TX }} 3$
4 DTR	4
5 ¢ SG	$\xrightarrow{\text { SG }} 5$
6 ¢ DSR	6
74 RTS	7
84 CTS	8
9	9

Connector: Rear panel, DB-9 male

J 10 Pinouts (RS-232C/422/485)	
Pin	Function
1	Rx-
2	Rx+ (RS-232C)
3	Tx+ (RS-232C)
4	Tx-
5	GND
6	Alarm Relay: Common
7	Alarm Relay: Normally Open
8	Not Used
9	Alarm Relay: Normally Closed

B) Status Requests Table 1.1 lists the status requests for the 2019-4x and briefly describes them.

* PLEASE NOTE: The two character \{aa\}(00-31) prefix, in the table below, should be used ONLY when RS-485, (OPTION-Q), is selected.

TABLE 1.1 2019-4x Status Requests

Command	Syntax *	Description
Query Frequency	\{aaSFn\}	Returns \{aaSFn; xxxx where:
		$\mathrm{n}=1,2,3$, or 4 to select Carrier 1,2,3, Or 4 respectively
		xxxx $=$ Frequency of Carrier n
Query Gain	\{aaSGn\}	Returns \{aaSGn;xxx\} where:
		$\mathrm{n}=1,2,3$, or 4 to select Carrier 1,2,3, or 4 respectively
		xxx $=$ Gain of of Carrier n
Mute Status	\{aaSMn\}	Returns $\{\mathrm{aaSMn} ; \mathrm{x}$ \} where:
		$\mathrm{n}=1,2,3$, or 4 to select Carrier 1,2,3, or 4 respectively
		$\mathrm{x}=0$ if Carrier n is not muted, $\mathrm{x}=1$ if Carrier n is muted
Alarm Status	\{aaSA \}	Returns \{aaSAx where:
		$x=1$ if the unit's alarm is on, $x=0$ if the unit's alarm is off
Product Information	\{aaSV \}	Returns \{aaSVxxxx-xxy,yy\} where:
		$x x x x-x x$ is the model number, $\mathrm{y} . \mathrm{yy}$ is the firmware revision

C) Commands Table 1.2 lists the commands for the 2019-4x and briefly describes them. After a command is sent the 2019-4x sends a return " $>$ " indicating the command has been received and executed.

General Command Format - The general command format is \{CND...\}, where:
\{ = start byte
$\mathrm{C}=1$ character, either C (command) or S (status)
$\mathrm{N}=1$ character command or status request
$\mathrm{D}=1$ character or more of data (depends on command)
$\}=$ stop byte

* PLEASE NOTE: The two character \{aa\}(00-31) prefix, in the table below, should be used ONLY when RS-485, (OPTION-Q), is selected.

Table 1.2 2019-4x Commands

Command	Syntax*	Description
Set Frequency	\{aaCFn; ${ }^{\text {a }}$ (xx $\}$	$\mathrm{n}=1,2,3$, or 4 to select Carrier 1,2,3, or 4 respectively
		xxxx $=$ desired frequency in MHz
		Frequency Range: 2019-41: 250-750 MHz
		Frequency Range: 2019-42 :1650-2150 MHz
		Frequency Range: 2019-43: 950-1450 MHz
		example: Set Frequency command for model 2019-41
		\{CF2;0742\} Set Carrier 2's frequency to 0742 MHz
Set Gain	\{aaCGn; $\times x x$ \}	$\mathrm{n}=1,2,3$, or 4 to select Carrier 1,2,3, or 4 respectively
		$x \mathrm{xxx}=$ desired gain in dB
		All 2019-4x models have a gain range of -10 to +10 dB
		example: Set Gain command:
		\{CG3;-10 ${ }^{\text {S }}$ Set Carrier 3's gain to -10 dB
Set Mute	\{aaCMn;x\}	$\mathrm{n}=1,2,3$, or 4 to select Carrier $1,2,3$, or 4 respectively
		$x=1$ to mute carrier $\mathrm{N}, \mathrm{x}=0$ to un-mute carrier N
		example: Set Mute command:
		\{CM4;1\} Mute (disable) carrier 4
Disable Remote	\{aaCR0 \}	\{CR and zero\}
Enable Remote	\#	J ust \# sign

2.0 Installation

2.1 Mechanical - The 2019-4x consists of an RF/Controller PCB and a splitter/combiner PCB housed in a 1 RU ($13 / 4$ inch high) by 16 inch deep chassis. A switching, $\pm 12,+24,+5$ VDC power supply provides power for the assemblies. The 2019-4x can be secured to a rack using the 4 holes on the front panel. Figure 2.0 shows how the 2019-4x is assembled.

FIGURE 2.0 2019-4x Mechanical Assembly
2.2 Rear Panel Input/Output Signals - Figure 2.1 shows the input and output connectors on the rear panel.

J10 - MONITOR AND CONTROL
DB9 female connector.
see Table 2.1.

J3-10 MHz EXT REF INPUT (Option -E) 10 MHz external reference input, $3 \pm 3 \mathrm{dBm}, 75$ ohms, BNC female connector.

AC1 - POWER IN
AC input for switching power supply.
$100-240 \pm 10 \%$ VAC, $47-60 \mathrm{~Hz}$.

J18-10 MHz REF OUTPUT
IF \& 10 MHz reference output. 75Ω BNC female/SMA connector.

J4- IF IN
70 MHz ,
-25 to -15 dBm input see Table 2.2.

J5-RF OUT
250-750 MHZ, Model 2019-41 1650-2150 MHZ, Model 2019-42 950-1450 MHZ, Model 2019-43 -30 to -10 dBm output level/carrier see Table 2.2.

FIGURE 2.1 2019-4x Rear Panel I/O's

TABLE 2.1 J 10 Pinouts (RS-232C/422/485*)

Pin	Function
1	Rx-
2	Rx+ (RS-232C)
3	Tx+ (RS-232C)
4	Tx-
5	GND
6	Alarm Relay: Common
7	Alarm Relay: Normally Open
8	Not Used
9	Alarm Relay: Normally Closed

*Remote Serial Interface

Interface: DB-9 Male
Protocol: RS-232C (RS-232C/422/485 option -Q),
9600 baud rate, no parity, 8 data bits, 1 start bit, 1 stop bit.

TABLE 2.2	F/RF Connector Options	
Option	IF	RF
STD	BNC, 75Ω	Type F, 75Ω
-B	BNC, 75Ω	BNC, 75Ω
$-C$	BNC, 75Ω	BNC, 50Ω
$-D$	BNC, 50Ω	BNC, 50Ω
$-N$	BNC, 75Ω	Type N, 50Ω
$-M$	BNC, 50Ω	Type N, 50Ω

2.3 Front Panel Controls and Indicators -The following are the front panel controls and indicators.

FIGURE 2.2 2019-4x Front Panel Controls and Indicators

2.4 Installation / Operation

2.4.1 Installing and Operating the 2019-4x, Upconverter Section

1. Connect a -25 dBm to -15 dBm signal to IF In, J4 (Figure 2.1)
2. Connect the RF OUT, J5, to the external equipment
3. Connect $100-240 \pm 10 \%$ VAC, $47-63 \mathrm{~Hz}$ to AC 1 on the back panel.
4. Set the desired output frequency (See Section 2.5 Menu Settings).
5. Set the gain for -10 to +10 dB . Make sure the output stays within -30 to -10 dBm with the gain selected and the input level provided.
6. Be sure DS6 (green, DC Power) is on and DS2 (red, Alarm) is off (Figure 2.2).
7. AC Fuse - The fuse is a $5 \mathrm{~mm} \mathrm{X} 20 \mathrm{~mm}, 2 \mathrm{amp}$ slow blow (Type T) and is inserted in the far slot in the drawer below the AC input as shown in Figure 2.3. There is a spare fuse in the near slot. If a fuse continues to open, the power supply is most likely defective.

FIGURE 2.3 Fuse Location and Spare Fuse

2.5 Menu Settings

2.5.1 Functions - This section describes operation of the front panel controls. There are three operator switches, the LCD display and alarm indicator LEDs. All functions for the equipment are controlled by these components. The functions are (see Figure 2.4):

Power Up		
Normal Display		
Menu	$\mathbf{1}$	Frequency of carrier 1
Menu	$\mathbf{2}$	Frequency of carrier 2
Menu	$\mathbf{3}$	Frequency of carrier 3
Menu	$\mathbf{4}$	Frequency of carrier 4
Menu	$\mathbf{5}$	Gain of carrier 1
Menu	$\mathbf{6}$	Gain of carrier 2
Menu	$\mathbf{7}$	Gain of carrier 3
Menu	$\mathbf{8}$	Gain of carrier 4
Menu	$\mathbf{9}$	Mute carrier 1
Menu	$\mathbf{1 0}$	Mute carrier 2
Menu	$\mathbf{1 1}$	Mute carrier 3
Menu	$\mathbf{1 2}$	Mute carrier 4
Menu	$\mathbf{1 3}$	Set unit to Remote Operation
Menu	$\mathbf{1 4}$	Set Remote Mode (option -Q)
Menu	$\mathbf{1 5}$	Set RS-485 address

Save Menu When go to end

Alarm indications appear on the LEDs (see figure 2.2).

All program changes must start with the operation of the Menu/Execute switch and must also end with the operation of the Menu/Execute switch verified by the "Save Settings?" Menu. If this sequence is not followed, none of the changes will take effect. If programming is initiated and no operator action takes place for approximately 12 seconds (before the final press of the Menu/Execute switch) the display will revert to its previous status and you will need to start over.

2.5.2. Power On Settings

NOTE: THE LAST STATUS OF A UNIT IS RETAINED EVEN WHEN POWER IS REMOVED. WHEN POWER IS RESTORED, THE UNIT WILL RETURN TO IT'S PREVIOUS SETTINGS.

When power is first applied, the LCD display goes through three steps.

1. The LCD goes black to show all segments are functioning.
2. The software version will be displayed.
```
2019-41
```

4.02
3. The present frequency and gain of the upconverter is shown.

274	354	514	682
-07	OFF	+08	+09

The unit is now operational and ready for any changes the operator may desire.

2.5.3 Control Switches

1. Menu/Execute - Any change to the programming of the unit must be initiated by pressing the Menu/Execute switch and completed by pressing the Menu/Execute switch.
2. Horizontal Switch - This switch is mounted so its movement is horizontal and moves the cursor left or right.
3. Vertical Switch - This switch is mounted so its movement is vertical and has two functions:
a. During frequency, gain changes, the vertical movement will raise or lower the number in the direction of the arrows.
b. For other functions such Mute on/off, the vertical switch will alternately turn the function on or off regardless of the direction operated.

2.5.4 Frequency Changes

At any time during the modification process, if you have made a mistake and do not wish to save the changes you have made, do not press the Menu/Execute switch; simply do nothing for approximately 12 seconds, and the system will return to the normal operating mode or scroll to " \mathbf{R} " and push the Menu/Execute switch and select "NO" in the "SAVE SETTINGS?" window.

To change the FREQUENCY:

Operate the Menu/Execute switch until you get to the menu item you want to change see Figure 2.4 for the sequence of menu options. The following display is for changing the upconverter frequency:
\square
Pressing the Up/Down switch down will toggle the display to:

```
FREQ C1 \(=0 \underline{3} 50 \quad R\)
```

By using the horizontal rocker switch the cursor can be moved left or right .
FREQ C1 $=03 \underline{5} 0 \quad R$

NOTE: CHANGES DO NOT TAKE PLACE ON FREQUENCY UNTIL YOU GO TO THE SAVE MENU AND INDICATE YOU WANT TO SAVE THE CHANGES. THE CARRIER IS MUTED WHEN FREQUENCY IS CHANGED.

When the display indicates the value desired you can push the Menu/Execute switch to the next item:
FREQ C2 = $0250 \quad$ R

OR you can scroll to "R", push the Menu/Execute switch to get to:
SAVESETTINGS? YN

Selecting \mathbf{Y} will save the new settings. Selecting \mathbf{N} will revert to the previous settings.
Pushing the Menu/Execute switch then takes you to the :

274	354	514	682
-07	OFF	+08	+09

Figure 2.4 gives the menu items and how to make changes

2.5.5 Gain Changes

When you get to this menu note that the gain changes will be made as you make them but if you do not wish to save the changes you have made, scroll to "R" and push the menu/Execute switch and select "NO" in the "SAVE SETTINGS?" window or do not press the Menu/Execute switch; simply do nothing for approximately 30 seconds, and the system will return to the normal operating mode.

NOTE: CHANGES TAKE PLACE ON GAIN IMMEDIATELY BUT DO NOT GET SAVED UNTIL YOU GO TO THE SAVE MENU AND INDICATE YOU WANT TO SAVE THE CHANGES.

Press the Up/Down switch to change the level in 1 dB steps and then push the Menu/Execute switch to get to the Gain setting:

GA I N $=-2 \underline{0}$	R

Use the horizontal rocker switch to move the cursor can be moved left or right .
Pressing the Up/Down switch down will toggle the display digit selected until you have the desired gain.
NOTE: THE GAIN WILL BE CHANGED AS YOU ADJUST THE NUMBERS. HOWEVER, THE VALUE WILL NOT BE STORED UNTIL YOU INDICATE YES IN THE SAVE SETTINGS WINDOW.

When the display indicates the value desired you can push the Menu/Execute switch to the next item OR you can scroll to "R", push the Menu/Execute switch to get to:

SAVE SETTINGS? YN

Selecting \mathbf{Y} will save the new settings. Selecting \mathbf{N} will revert to the previous settings.
Pushing the Menu/Execute switch then takes you to the :

274	354	514	682
-07	OFF	+08	+09

Figure 2.4 gives the menu items and how to make changes

2.5.5 Alarm Indications

An alarm condition for will occur if any local oscillator phase lock loop (PLL) comes out of lock.
The Mute LED will light if you select Mute and the Remote LED will light when you select the Remote mode.

FIGURE 2.4 Menu Display and Sequences

1.4 Use Information

A. Rack-Mounting - To mount this equipment in a rack, please refer to the installation instructions located in the user manual furnished by the manufacturer of your equipment rack.
B. Mechanical Loading - Mounting of equipment in a rack should be such that a hazardous condition does not exist due to uneven weight distribution.
C. Elevated Operating Ambient Temperature - If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack may be greater than room ambient temperature. Therefore, consideration should be given to Tmra.
D. Reduced Air Flow - Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised. Additional space between unit may be required.
E. Circuit Overloading - Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of circuits could have on over current protection and supply wiring. Appropriate consideration of equipment name plate rating should be used, when addressing this concern.
F. Reliable Earthing - Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connection to the Branch (use of power strips).
G. Top Cover - There are no serviceable parts inside the product so, the Top Cover should not be removed. If the Top Cover is removed the ground strap and associated screw MUST BE REINSTALLED prior to Top Cover screw replacement. FAILURE TO DO this may cause INGRESS and/or EGRESS emission problems.

CROSS TECHNOLOGIES, INC.

6170 Shiloh Road
Alpharetta, Georgia 30005
(770) 886-8005

FAX (770) 886-7964
Toll Free 888-900-5588

WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com

Printed in USA

