

Data, drawings, and other material contained herein are proprietary to Cross Technologies, Inc., but may be reproduced or duplicated without the prior permission of Cross Technologies, Inc. for purposes of operating the equipment. Printed in USA.

When ordering parts from Cross Technologies, Inc., be sure to include the equipment model number, equipment serial number, and a description of the part.

6170 Shiloh Road
Alpharetta, Georgia 30005
(770) 886-8005
FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com

INSTRUCTION MANUAL

MODEL 2017-02 Up/Downconverter

TABLE OF CONTENTS PAGE
Warranty 2
1.0 General 3
1.1 Equipment Description 3
1.2 Technical Characteristics 4
1.3 Monitor \& Control Interface 5
2.0 Installation 9
2.1 Mechanical 9
2.2 Rear I/O's 10
2.3 Front Panel Controls, Indicators 11
2.4 Operation 12
2.5 Menu Settings 15
3.0 Environmental Use Information 20

WARRANTY - The following warranty applies to all Cross Technologies, Inc. products.
All Cross Technologies, Inc. products are warranted against defective materials and workmanship for a period of one year after shipment to customer. Cross Technologies, Inc.'s obligation under this warranty is limited to repairing or, at Cross Technologies, Inc.'s option, replacing parts, subassemblies, or entire assemblies. Cross Technologies, Inc. shall not be liable for any special, indirect, or consequential damages. This warranty does not cover parts or equipment which have been subject to misuse, negligence, or accident by the customer during use. All shipping costs for warranty repairs will be prepaid by the customer. There are not other warranties, express or implied, except as stated herein.

MODEL 2017-02 Up/Downconverter

1.0 General

1.1 Equipment Description

The 2017-02 L-band Up/Downconverter converts 70 MHz to $950-2150 \mathrm{MHz}(\mathrm{Up})$ and $950-2150 \mathrm{MHz}$ to 70 MHz (Down) in 1 MHz steps (125 kHz steps optional - option X) with low group delay and flat frequency response. Synthesized local oscillators (LO) provide frequency selection. Multi-function push button switches select the RF frequency, gain, and other parameters. Front panel LEDs provide indication of DC power (green), PLL alarm for up and downconverters (red), remote operation (yellow), and upconverter mute (yellow). Gain is manually controlled over a -10 to +30 dB range for the upconverter and over a 0 to +50 dB range for the downconverter as adjusted by the front panel multi-function push-button switches. Remote operation allows selection of frequency and gain. Parameter selection and frequency and gain settings appear on the LCD display. Connectors are BNC female for IF and the optional external reference input and output, and Type F female for RF. LNB or SSPB +24 VDC and 10 MHz reference can be inserted on the RF lines as added options. A high stability ($\pm 0.01 \mathrm{ppm}$) option is also available. The unit is powered by a $100-240 \pm 10 \%$ VAC power supply and housed in a 1.75 " X $19 "$ X 16 " rack mount chassis.

FRONT PANEL

REAR PANEL
Figure 1.1 Model 2017-02 Front and Rear Panels

Figure 1.2 Model 2017-02 Up/Downconverter Block Diagram

1.2 Technical Characteristics

TABLE 1.0 2017-02 Up/Downconverter Specifications*

Input Characteristics (IF)	
Impedance/Return Loss	$75 \Omega / 18 \mathrm{~dB}$
Frequency	$70 \pm 18 \mathrm{MHZ}$
Input Level	-40 to -10 dBm
Output Characteristics (RF)	
Impedance/Return Loss	75 ת/12 dB
Frequency	950 to 2150 MHz
Output level	0 to -20 dBm
Output 1 dB compression	$+5 \mathrm{dBm}$
Channel Characteristics	
Gain range (adjustable)	-10 dB to +30 dB
Frequency Sense	Non-inverting

--------UP AND DOWNCONVERTER--------

--------DOWNCONVERTER--------
Input Characteristics (RF)
Impedance/Return Loss $75 \Omega / 12 \mathrm{~dB}$
Frequency $\quad 950$ to 2150 MHz
Noise Figure (max.) $\quad 15 \mathrm{~dB}$ @ max. gain
Input Level $\quad-70$ to -20 dBm
Input 1 dB compression $-15 \mathrm{dBm} @ 0 \mathrm{~dB}$ gain
Output Characteristics (IF)
Impedance/Return Loss $75 \Omega / 18 \mathrm{~dB}$
Frequency $\quad 70 \pm 18 \mathrm{MHz}$
Output level/max. linear $\quad-20 \mathrm{dBm} /-10 \mathrm{dBm}$
Output 1 dB compression -5 dBm
Channel Characteristics
Gain range (adjustable) 0 dB to +50 dB
Freq Sense (selectable) Inverting/Non-inverting

Channel Characteristics

Frequency Response
Spurious Response
Group Delay (max.)

Synthesizer Characteristics

Frequency Accuracy
Frequency Step
Phase Noise (dBc/Hz)
10 MHz Level (In or Out)
Controls, Indicators
Frequency Selection
Gain Selection
Power
Down/Up Alarm
Up Mute
Remote
Other
RF Connectors
IF Connectors
10 MHz Connectors
Alarm/Remote Connector
Size
Power
-E
-E1
-H
-L
-V
$-\mathrm{Q}$
-W8
-W18
-W28
-X or X1
Connectors/Impedance
$\pm 1.5 \mathrm{~dB}, 950-2150 \mathrm{MHz} ; \pm 0.5 \mathrm{~dB}, 36 \mathrm{MHz}$ BW
$<-50 \mathrm{dBC}$ in band
$0.01 \mathrm{~ns} / \mathrm{MHz}^{2}$ parabolic; $0.03 \mathrm{~ns} / \mathrm{MHz}$ linear; 1 ns ripple
$\pm 1.0 \mathrm{ppm}$ max. over temp $(\pm 0.01 \mathrm{ppm}$, option -H) internal ref.
$1.0 \mathrm{MHz}(125 \mathrm{kHz}$, option -X)
<-70 @ 100Hz, <-70 @ 1kHz; <-80 @ 10kHz; <-90 @ 100kHz; <-100 @ 1 MHz
$+3 \mathrm{dBm} \pm 3 \mathrm{~dB}, 75$ ohms (option -E)
direct readout LCD; manual or remote selection
direct readout LCD; manual or remote selection
Green LED
Red LED
Yellow LED
Yellow LED; RS232C, 9600 baud (RS485, option -Q)

Type F (female) (see Table 2.2 for connector options)
BNC (female) (see Table 2.2 for connector options)
BNC (female) (option -E)
DB9 (female) - NO or NC contact closure on Alarm
19 inch, 1 RU standard chassis 1.75 " H X 16.0 " D
$100-240 \pm 10 \%$ VAC, $47-63 \mathrm{~Hz}, 45$ watts max.
External 10 MHz reference with RF insertion
External 10 MHz reference input \& output with Auto Detect/Switching \& Auto Return
High Stability ($\pm 0.01 \mathrm{ppm}$) internal reference
LNB Voltage, $+24 \mathrm{VDC}, 0.5 \mathrm{mps}$
SSPB Voltage, +24VDC, 2.5 amps
RS485 Remote Interface
Temperature Sensor
Ethernet M\&C Remote Interface
Ethernet M\&C Remote Interface with SNMP
Ethernet with TCP/IP, Telnet ${ }^{\circledR}$
125 or 100 kHz frequency steps

[^0]
1.3 Monitor and Control Interface

A) Remote serial interface

Protocol: RS-232C, 9600 baud rate, no parity, 8 data bits, 1 start bit, and 1 stop bit. (RS-232C, RS-422, or RS-485-option -Q)

M\&C Cable Diagram - Cross Technologies Frequency Converters	
Female DB-9	Male DB-9
PC Com Port	2015/16/17 M\&CPort
1	1
2 ¢ RX	$\xrightarrow{\mathrm{RX}} 2$
$3<\mathrm{TX}^{\text {a }}$	$\xrightarrow{\mathrm{TX}} 3$
44 DTR	4
$5 \stackrel{S G}{ }$	$\xrightarrow{\text { SG }} 5$
6 ¢ DSR	6
74 RTS	7
84 CTS	8
9	9

Connector: Rear panel, DB-9 male

J 10 Pinouts (RS-232C/422/485)	
Pin	Function
1	Rx-
2	Rx+ (RS-232C)
3	Tx+ (RS-232C)
4	Tx-
5	GND
6	Alarm Relay: Common
7	Alarm Relay: Normally Open
8	Not Used
9	Alarm Relay: Normally Closed

B) Status Requests

Table 1.1 lists the status requests for the 2017-02 and briefly describes them.

* PLEASE NOTE: The two character \{aa\}(00-31) prefix, in the table below, should be used ONLY when RS-485, (OPTION-Q), is selected.

Table 1.1 2017-02 Status Requests

Command	Syntax*	Description
Status	\{aaS1\}	Returns \{aaS1bbbbccccdddeeffLMNOP\} where:
		- bbbb = Tx frequency (bbbbbbb, option -x)
		4 characters - standard (7 characters - Option-x)
		- cccc $=$ Rx frequency (ccccccc, option -x)
		4 characters - standard (7 characters - Option-X)
		- ddd = Tx gain (-10 to 30)
		- ee $=R \times$ gain (0 to 50)
		- $\mathrm{ff}=\mathrm{Tx}$ input level (10 to $40=>-10$ to -40 dBm)
		- L = Receiver Inversion ($0=$ non-inverted; $1=$ inverted)
		- $M=$ Receiver synth alarm ($0=$ alarm off; $1=$ alarm on)
		- $\mathrm{N}=$ Transmitter synth alarm ($0=$ alarm off; $1=$ alarm on)
		- O = Summary alarm ($0=$ alarm off; $1=$ alarm on)
		- $\mathrm{P}=$ Transmit signal control
		($0=$ disabled/muted; $1=$ enabled $/$ not muted)
External 10 MHz (option -E)	\{aaS2 \}	Returns \{aaS2bcd\} where:
		- $\mathrm{b}=10 \mathrm{MHz}$ Selected ($0=$ Internal; $1=$ External)
		- c = Upconverter 10 MHz insertion RF [J 5])
		($0=$ not inserted; $1=$ inserted)
		- $\mathrm{d}=$ Downconverter 10 MHz insertion RF [J 2])
		(0 = not inserted; 1 = inserted)
External 10 MHz (option -E1)	\{aaS2 \}	Returns \{aaS2bc\} where:
		- $b=1$ if internal reference mode is selected
		- $\mathrm{b}=2$ if external reference mode is selected
		- $b=3$ if auto reference mode is selected
		- c $=0$ if internal 10 MHz is active
		- c $=1$ if external 10 MHz is active
IP Address (W8, W18, W28 only)	\{aaSi\}	Returns \{aaSixxx.xxx.xxx.xxx\} where:
		- x... x is the IP address
Subnet mask(W8,W18,W28 only)	\{aaSs\}	Returns \{aaSsxxx.xxx.xxx.xxx\} where:
		- x... x is the subnet mask
Unit ID	\{aaSU\}	Returns \{aaSUx...x\} where:
		- x ... x is the unit ID character string (max. 16 characters)
Product Info	\{aaSV\}	Returns \{aaSV2017-xxxx ver y.yy\} where:
		2017-xxxx is the model with options; yyy is the firmware Rev.
LNB Current (option -L)	\{aaS3\}	Returns \{aaS3bb\} where:
		- bb = LNB current, range 00 to 50 (0 to 500 ma)
SSPB Current (option -V)	\{aaS4\}	Returns \{aaS4bbb\} where:
		- bbb $=$ SSPB current, range 000 to 250 (0 to 2500 ma)

C) Commands

Table 1.2 lists the commands for the 2017-02 and briefly describes them. After a command is sent the 2017-02 sends a return " $>$ " indicating the command has been received and executed.

General Command Format - The general command format is $\{a \mathrm{aCND} . .$.$\} , where:$
\{ = start byte
aa $=$ address (RS-485 only option -Q)
$\mathrm{C}=1$ character, either C (command) or S (status)
$\mathrm{N}=1$ character command or status request
$\mathrm{D}=1$ character or more of data (depends on command)
\} = stop byte

* PLEASE NOTE: The two character \{aa\}(00-31) prefix, in the table below, should be used ONLY when RS-485, (OPTION-Q), is selected.

Table 1.2 2017-02 Commands

Command	Syntax*	Description
Set Transmitter Frequency	\{aaC1xxxx\}	where:
		- $\mathrm{xxxx}=4$ characters standard (7 characters -option-X)
		- Range: 0950-2150 MHz (0950000-2150000, option-X)
Set Transmitter Input Level	\{aaClxx\}	where:
		- $\mathrm{xx}=2$ characters
		- Range: 10 to 40 (-10 to -40 dBm)
Set Receiver Frequency	\{aaC2xxxx $\}$	where:
		- $\mathrm{xxxx}=4$ characters standard (7 characters -option-X)
		- Range: $0950-2150 \mathrm{MHz}$ (0950000-2150000, option -X)
Set Transmit Gain	\{aaC3xxxx\}	where:
		- $\mathrm{xxxx}=2$ or 3 characters (4 characters - Option Z5)
		- Range: -10 to 30 (-10 dB to 30 dB , in 1 dB steps)
	Option Z5	- Range: -100 to 300 in 0.5 dB steps, omit the decimal point.
		Example: $\{$ aaC3 +155$\}$ sets the upconverter gain to 15.5 dB .
Set Receiver Gain	\{aaC4xxx\}	where:
		- $\mathrm{xx}=2$ characters (3 characters - Option $\mathrm{Z5}$)
	Option Z5	- Range: 00 to 500 in 0.5 dB steps, omit the decimal point.
		Example: \{aaC4255\} sets the downconverter gain to 25.5 dB .
		- Range: 00 to 50 (00 dB to 50 dB , in 1 dB steps)
Enable Tx	\{aaCAx\}	where:
		- $\mathrm{x}=0$ to disable $\mathrm{T} \times$ signal
Set Ext Reference	\{aaCEx\}	where:
		- $x=0$ for internal reference
		- $\mathrm{x}=0$ for external reference

Table 1.2 (2017-02 Commands, continued from page 7...)

Table 1.2 2017-02 Commands - continued from page 7

Command	Syntax*	Description
Insert 10MHz on UP RF (option -E)	$\{a a C 5 x\}$	where:
(N/A option -E1)		$\bullet x=0$ to disable 10 MHz upconverter insertion on RF[J 5]
		$\bullet x=1$ to enable 10 MHz upconverter insertion on RF[J 5]
Insert 10MHz on DOWN RF (option -E)	$\{a a C 6 x\}$	where:
(N/A option -E1)		$\{0$ to disable 10MHz downconverter insertion on RF (J 2)
		$\{1$ to enable 10MHz downconverter insertion on RF (J 2)
	$\{a a C 7 x\}$	where:
Downconverter Spectrum		$\bullet x=0$ for non-inverted
		$\bullet x=1$ for inverted
	\#	Just \# sign
	$\{a a C R 0\} *$	$\{C R$ and zero $\}$
Enable Remote		
Disable Remote	$\{a C E x\}$	where:
		$\bullet x=0$ for internal reference
Set Ext Reference		$\bullet x=1$ for external reference

2.0 Installation

2.1 Mechanical

The 2017-02 consists of one RF/Controller PCB housed in a 1 RU ($13 / 4$ inch high) by 16 inch deep chassis. A switching, $\pm 12,+5,+24$ VDC power supply provides power for the assemblies. The 2017-02 can be secured to a rack using the 4 holes on the front panel. Figure 2.0 shows how the 2017-02 is assembled.

Figure 2.0 Model 2017-02 Mechanical Assembly
2.2 Rear Panel Input/Output Signals and Control - Figure 2.1 shows the input and output connectors on the rear panel.

Figure 2.1 Model 2017-02 Rear Panel I/O's
TABLE 2.1 J 10 Pinouts (RS-232C/422/485*)

Pin	Function
1	Rx-
2	Rx+ (RS-232C)
3	Tx+ (RS-232C)
4	Tx-
5	GND
6	Alarm Relay: Common
7	Alarm Relay: Normally Open
8	Not Used
9	Alarm Relay: Normally Closed

*Remote Serial Interface
Interface: DB-9 Male
Protocol: RS-232C (RS-232C/422/485 option -Q), 9600 baud rate, no parity, 8 data bits, 1 start bit, 1 stop bit.

TABLE 2.2 IF/RF Connector Options

Option	IF	RF
STD	BNC, 75Ω	Type F, 75Ω
-B	BNC, 75Ω	BNC, 75Ω
-C	BNC, 75Ω	BNC, 50Ω
-D	BNC, 50Ω	BNC, 50Ω
-N	BNC, 75Ω	Type $N, 50 \Omega$
-M	BNC, 50Ω	Type $N, 50 \Omega$

2.3 Front Panel Controls and Indicators - The following are the front panel controls and indicators.

DS3 - DOWN ALARM LED
Red LED indicates
downconverter alarm.

DS1 - REMOTE LED Yellow LED indicates remote operation.

LCD DISPLAY	S1 - MENU/EXECUTE BUTTON
Press this to get into Program mode and to execute any changes.	

S1 - MENU/EXECUTE BUTTON
 and to execute any changes.

DS6 - POWER LED DS5 - UP MUTE LED DS2 - UP ALARM LED S2 - VERT. TOGGLE Green LED indicates presence of DC power.

Yellow LED indicates upconverter mute.

Red LED indicates upconverter alarm.

Figure 2.2 Model 2017-02 Front Panel Controls and Indicators

2.4 Installation / Operation

2.4.1 Installing and Operating the 2017-02, Upconverter Section

1.) Connect a -10 dBm to -40 dBm signal to IF In, J 4 (Figure 2.1).
2.) Connect the RF OUT, J5, to the external equipment.
3.) Connect $100-240 \pm 10 \%$ VAC, $47-63 \mathrm{~Hz}$ to AC on the back panel.
4.) Set the desired output frequency (See Section 2.5 Menu Settings).
5.) Set the input level (See Section 2.5 Menu Settings).
6.) Set the gain (See Section 2.5 Menu Settings).
7.) (option -V) To power the SSPB (+24 VDC, 2.5 amps max.) from the 2017-02 install a $2.5 \mathrm{amp} 1 / 4$ " fuse in F2.

CAUTION!!! INSTALLING A FUSE IN F2 PUTS +24 VDC, 2.5 AMP POWER ON THE CENTER PIN AND MAY DAMAGE EQUIPMENT IF IMPROPERLY CONNECTED TO EQUIPMENT THAT CANNOT HANDLE THIS VOLTAGE OR HAS A DC PATH TO GROUND.
8.) Be sure DS6 (green, DC Power) is on and DS2 (red, Alarm) is off (Figure 2.2).

2.4.2 Installing and Operating the 2017-02, Downconverter Section

1.) Connect a -70 dBm to -20 dBm signal to RF In, J 2 (Figure 2.1).
2.) Connect the IF OUT, J 1 , to the external equipment.
3.) Connect $100-240 \pm 10 \%$ VAC, $47-63 \mathrm{~Hz}$ to AC on the back panel.
4.) Set the desired input frequency (See Section 2.5 Menu Settings).
5. Set the gain to get the desired output level.
6.) (option -L) To power the LNB (+24 VDC, 0.5 amps , max.) from the 2017-02 install a $1 \mathrm{amp} 1 / 4$ " fuse in F1.

CAUTION!!! INSTALLING A FUSE IN F1 PUTS +24 VDC, 0.5 AMP POWER ON THE CENTER PIN AND MAY DAMAGE EQUIPMENT IF IMPROPERLY CONNECTED TO EQUIPMENT THAT CANNOT HANDLE THIS VOLTAGE OR HAS A DC PATH TO GROUND.
7.) Be sure DS6 (green, DC Power) is on and DS3 (red, Alarm) is off (Figure 2.2).
8.) AC Fuse - The fuse is a $5 \mathrm{~mm} \times 20 \mathrm{~mm}, 2 \mathrm{amp}$ slow blow (Type T) and is inserted in the far slot in the drawer below the AC input as shown in Figure 2.3. There is a spare fuse in the near slot. If a fuse continues to open, the power supply is most likely defective.

2.4.3 External 10 MHz Reference Operation

The External Reference Option is required if the unit is to synch to a 10 MHz reference from an external source. The unit will still have an internal 10 MHz reference as a 'back-up' should the external reference be removed or fail. Described below are the two (2), 10 MHz External Reference Options, Option E \& E1.

Option E

Internal Reference Mode

When the internal reference mode is selected, the unit's internal 10 MHz reference will become the 'primary' source and the unit's synthesizers will lock to this internal 10 MHz reference. The unit will ignore any external 10 MHz signal present on the external reference input (J13). The unit will also buffer the internal 10 MHz signal and provide it on the Reference Out connector (J14) at $+3 \mathrm{dBm},+/-3 \mathrm{~dB}$.

External Reference Mode

When the external reference mode is selected, the external 10 MHz reference (received on J13) will become the 'primary' source and the unit's synthesizers will lock to this external 10 MHz reference. The unit must have a 10 MHz signal connected to the external reference input (J13) on the rear panel. The external 10 MHz signal must be $+3 \mathrm{dBm},+/-3 \mathrm{~dB}$. The unit will also buffer the external 10 MHz signal and provide it on the Reference Out connector (J 14) at $+3 \mathrm{dBm},+/-3 \mathrm{~dB}$.

NOTE: There is no "auto-detect" capability in Option E. [See Option E1 below if this capability is required.] If the External Reference Mode is selected and the external reference fails or is removed, the unit will ALARM, but it will NOT automatically switch to the internal reference. The user will be required to manually select Internal Reference Mode (via the front panel LCD or Remote M\&C) for the internal 10 MHz reference to become the 'primary' source for the unit.

Once the external 10 MHz reference is restored (on J13), the user must again manually (via the front panel LCD or Remote M\&C) reselect External Reference Mode for the external 10 MHz reference to become the 'primary' source.

L-band units with option E also have the ability to 'insert' the (internal or external) 10 MHz signal that has been buffered (as described above) on the center pin of the L-band (RF) connector(s).

Option E1

Units with option E1 operate as described above but also have an Auto mode. When in auto mode the unit will detect and select the external 10 MHz signal if it is present and at least +3 dBm . If the external 10 MHz signal falls below $1 \mathrm{dBm}(+/-1 \mathrm{~dB})$ the unit will automatically switch to the internal 10 MHz reference. The reference out connector (J14) provides a buffered rendition of the selected 10 MHz signal at $+3 \mathrm{dBm},+/-3 \mathrm{~dB}$.

Units with option E1 do not have the ability to insert a buffered rendition of the selected 10 MHz signal on the center pin of the (RF) connector.

Figure 2.3 Fuse Location and Spare Fuse

2.5 Menu Settings

2.5.1 Functions - This section describes operation of the front panel controls. There are three operator switches, the LCD display and alarm indicator LEDs. All functions for the equipment are controlled by these components. The functions are (see Figure 2.2):

Power Up	
Normal Display	
Menu 1	Up Frequency in MHz
Menu 2	Up Input Lvl (Set from -40 to -10)
Menu 3	Up Gain (-10 to +30)
Menu 4	Down Frequency in MHz
Menu 5	Down Gain (set 0 to +50 for -20 to 0 dBm out range)
Menu 6	Set Downconverter Spectrum Sense
Menu 7	Up Mute
Menu 8	Set Unit to Remote Operation
Menu 9	Set Remote Interface
Menu 10	Set RS-485 address (option -Q)
Menu 11	Select External 10 MHz Reference (option -E) (option -E1)
Menu 12	Upconverter Reference Out (option -E)
Menu 13	Downconverter Reference Out (option -E)
Menu 14	View PCB Temperature (option -T)
Menu 15	View LNB and/or SSPB Current (options -L and/or -V)
Save Menu	When go to end

Alarm indications appear on the LEDs (see figure 2.2).

All program changes must start with the operation of the Menu/Execute switch and must also end with the operation of the Menu/Execute switch verified by the "Save Settings?" Menu. If this sequence is not followed, none of the changes will take effect. If programming is initiated and no operator action takes place for approximately 30 seconds (before the final press of the Menu/Execute switch) the display will revert to its previous status and you will need to start over.

2.5.2 Power-On Settings

NOTE: THE LAST STATUS OF A UNIT IS RETAINED EVEN WHEN POWER IS REMOVED. WHEN POWER IS RESTORED, THE UNIT WILL RETURN TO IT'S PREVIOUS SETTINGS.

When power is first applied, the LCD display goes through three steps.

1. The LCD goes black to show all segments are functioning.
2. The model number with options software version will be displayed.
```
2017-02E1W8X
4.00
```

3. The present frequency and gain of the up and downconverter is shown.

$U F=1350$	$G=+10$
$D ~ F=1250$	$G=+20$

The unit is now operational and ready for any changes the operator may desire.

2.5.3 Control Switches

1. Menu/Execute - Any change to the programming of the unit must be initiated by pressing the Menu/Execute switch and completed by pressing the Menu/Execute switch.
2. Horizontal Switch - This switch is mounted so its movement is horizontal and moves the cursor left or right.
3. Vertical Switch - This switch is mounted so its movement is vertical and has two functions:
a. During frequency, gain, input level changes, the vertical movement will raise or lower the number in the direction of the arrows.
b. For other functions such Mute on/off, the vertical switch will alternately turn the function on or off regardless of the direction operated.

2.5.4 Frequency Changes

At any time during the modification process, if you have made a mistake and do not wish to save the changes you have made, do not press the Menu/Execute switch; simply do nothing for approximately 30 seconds, and the system will return to the normal operating mode or scroll to " \mathbf{R} " and push the menu/Execute switch and select "NO" in the "SAVE SETTINGS?" window.

To change the FREQUENCY:

Operate the Menu/Execute switch until you get to the menu item you want to change (see Figure 2.4 for the sequence of menu options). The following display is for changing the upconverter frequency:

$$
U P F=1350
$$

R

Pressing the Up/Down switch down will toggle the display to:

$U P=1450$

By using the horizontal rocker switch the cursor can be moved left or right.
\square
UP F $=1450 \quad R$

NOTE: CHANGES DO NOT TAKE PLACE ON FREQUENCY UNTIL YOU GO TO THE SAVE MENU AND INDICATE YOU WANT TO SAVE THE CHANGES.

When the display indicates the value desired you can push the Menu/Execute switch to the next item:
UP INLVL $=-2 \underline{0} \quad R$

NOTE: CHANGES TAKE PLACE ON LEVEL AND GAIN IMMEDIATELY BUT DO NOT GET SAVED UNTIL YOU GO TO THE SAVE MENU AND INDICATE YOU WANT TO SAVE THE CHANGES.

OR you can scroll to "R", push the Menu/Execute switch to get to:

SAVE SETTINGS?	$\mathbf{Y N}$

Selecting \mathbf{Y} will save the new settings. Selecting \mathbf{N} will revert to the previous settings. Pushing the Menu/Execute switch then takes you to the :

$U F=1450$	$G=+10$
$D ~ F=1250$	$G=+20$

Figure 2.4 shows all the menu items and how to make changes.

2.5.5 Gain Changes

When you get to this menu note that the gain changes will be made as you make them but if you do not wish to save the changes you have made, scroll to "R" and push the menu/Execute switch and select "NO" in the "SAVE SETTINGS?" window or do not press the Menu/Execute switch; simply do nothing for approximately 30 seconds, and the system will return to the normal operating mode.

2.5.5.1 Upconverter Gain

To set the upconverter gain, first push the Menu/Execute switch to get to the gain setting:

Operate the Menu/Execute switch until you get to the menu item you want to change. See Figure 2.4 for the sequence of menu options.

The following display is for changing the upconverter input level. This is an important setting to optimize spurious and should be made as accurately as possible:

```
UP INLVL \(=-2 \underline{0} \quad R\)
```

Pressing the Up/Down switch to change the level in 1 dB steps and then push the Menu/Execute switch to get to the Gain setting:

```
UP G = +20 R
```

By using the horizontal rocker switch the cursor can be moved left or right .
Press the Up/Down switch until you have the desired gain.
NOTE: THE GAIN WILL CHANGE AS YOU ADJUST THE NUMBERS. HOWEVER, THE VALUE WILL NOT BE STORED UNTIL YOU INDICATE YES IN THE SAVE SETTINGS WINDOW. DO NOT SET A GAIN THAT WOULD EXCEED A 0 dBm OUTPUT LEVEL.

When the display indicates the value desired you can push the Menu/Execute switch to the next item OR you can scroll to "R", push the Menu/Execute switch to get to:

SAVE SETTINGS?	$\mathbf{Y} \mathbf{N}$

Selecting \mathbf{Y} will save the new settings. Selecting \mathbf{N} will revert to the previous settings. Pushing the Menu/Execute switch then takes you to the :

U F $=1450$	$G=+20$
$D ~ F=1350$	$G=+20$

Figure 2.4 shows all the menu items and how to make changes.

2.5.5.2 Downconverter Gain

To set the downconverter gain, first push the Menu/Execute switch to get to the gain setting:

Operate the Menu/Execute switch until you get to the menu item you want to change. See Figure 2.4 for the sequence of menu options.

The following display is for changing the downconverter gain. Set the gain to provide an appropriate output level.

DN G $=+\underline{3} 0$	R

Press the Up/Down switch to change the level in 1 or 10 dB steps. By using the horizontal rocker switch the cursor can be moved left or right. Pressing the Up/Down switch down will toggle the display digit selected until you have the desired gain.

NOTE: THE GAIN WILL CHANGE AS YOU ADJUST THE NUMBERS. HOWEVER, THE VALUE WILL NOT BE STORED UNTIL YOU INDICATE YES IN THE SAVE SETTINGS WINDOW.

When the display indicates the value desired you can push the Menu/Execute switch to the next item OR you can scroll to "R", push the Menu/Execute switch to get to:

SAVE SEITINGS?	Y N

Selecting \mathbf{Y} will save the new settings. Selecting \mathbf{N} will revert to the previous settings.
Pushing the Menu/Execute switch then takes you to the :

$U F=1450$	$G=+20$
$D F=1350$	$G=+30$

Figure 2.4 shows all the menu items and how to make changes.

2.5.5 Alarm Indications

An alarm condition will occur if any local oscillator phase lock loop (PLL) comes out of lock.

Figure 2.4 Menu Display and Sequence

3.0 Environmental Use Information

A. Rack-Mounting - To mount this equipment in a rack, please refer to the installation instructions located in the user manual furnished by the manufacturer of your equipment rack.
B. Mechanical loading - Mounting of equipment in a rack should be such that a hazardous condition does not exist due to uneven weight distribution.
C. Elevated operating ambient temperature - If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack may be greater than room ambient temperature. Therefore, consideration should be given to Tmra (Maximum Recommended Ambient Temperature).
D. Reduced air flow - Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised. Additional space between unit may be required.
E. Circuit Overloading - Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of circuits could have on over current protection and supply wiring. Appropriate consideration of equipment name plate rating should be used, when addressing this concern.
F. Reliable Earthing - Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connection to the Branch (use of power strips).
G. Top Cover - There are no serviceable parts inside the product so, the Top Cover should not be removed. If the Top Cover is removed the ground strap and associated screw MUST BE REINSTALLED prior to Top Cover screw replacement. FAILURE TO DO this may cause INGRESS and/or EGRESS emission problems.

凸 Cross technologies, inc.
 6170 Shiloh Road
 Alpharetta, Georgia 30005
 (770) 886-8005
 FAX (770) 886-7964
 Toll Free 888-900-5588
 WEB www.crosstechnologies.com
 E-MAIL info@crosstechnologies.com

Printed in USA

[^0]: $*+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$; Specifications subject to change without notice

