Instruction Manual

April 2010 Rev 0

Data, drawings, and other material contained herein are proprietary to Cross Technologies, Inc., but may be reproduced or duplicated without the prior permission of Cross Technologies, Inc. for purposes of operating the equipment.

When ordering parts from Cross Technologies, Inc., be sure to include the equipment model number, equipment serial number, and a description of the part.

6170 Shiloh Road
Alpharetta, Georgia 30005
(770) 886-8005

FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com

INSTRUCTION MANUAL

MODEL 1200-04 IF PROCESSOR

TABLE OF CONTENTS
Warranty
1.0 General
1.1 Equipment Description
1.2 Technical Characteristics
1.3 Environmental Use Information
2.0 Installation
2.1 Mechanical
2.2 Rear I/O's, Control
2.3 Front Panel I/O's, Indicators
2.4 Operation

PAGE

2

 33
4
6

7

7
8
8
9

WARRANTY - The following warranty applies to all Cross Technologies, Inc. products.
All Cross Technologies, Inc. products are warranted against defective materials and workmanship for a period of one year after shipment to customer. Cross Technologies, Inc.'s obligation under this warranty is limited to repairing or, at Cross Technologies, Inc.'s option, replacing parts, subassemblies, or entire assemblies. Cross Technologies, Inc. shall not be liable for any special, indirect, or consequential damages. This warranty does not cover parts or equipment which have been subject to misuse, negligence, or accident by the customer during use. All shipping costs for warranty repairs will be prepaid by the customer. There are not other warranties, express or implied, except as stated herein.

6170 Shiloh Road
Alpharetta, Georgia 30005
(770) 886-8005

FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com

MODEL 1200-04 IF PROCESSOR

1.0 General

1.1 Equipment Description - The 1200-04 IF Processor consists of a transmit and receive side. The receive side consists of one IF signal passing through an Automatic Gain Control (AGC) amplifier and then split into three output signals each having variable attenuators to adjust their levels via front panel multi-turn potentiometers. The AGC amplifier adjusts a -95 to $-15 \mathrm{dBm}, 50$ to 90 MHz IF input signal to a -30 dBm , $+5,-15 \mathrm{~dB}$ output. A front panel output port provides a monitor signal directly out of the AGC amplifier, and front panel potentiometers adjust the attenuation (between 0 and 20 dB) to each of the three output signals, DIG1RX, FDMRX, and DIG2RX.

The transmit side consists of three transmit IF signals combined into one. DIG1TX, FDMTX, and DIG2TX signals each pass through individual attenuators controlled via front panel potentiometers and a switch that is controlled remotely through a DB9 connector or locally with three SPDT switches located on the front panel. A SPDT switch on the front panel selects either REMOTE or LOCAL operation. A local override feature is included such that when the REMOTE/LOCAL switch is left in the LOCAL position, the override pin on the DB9 can be set to override the LOCAL control and allow for REMOTE control.

DIG1 and DIG2 on both transmit and receive sides are 75Ω in/out while FDM on both transmit and receive sides are 50Ω in/out. When power is removed from the $1200-04$, the FDM TX and FDMRX signals pass through to the output. IF connectors are TNC female. The $1200-04$ is housed in a 1 RU x 14 " deep chassis and powered by a $100-240 \pm 10 \%$ VAC, $47-63 \mathrm{HZ}$ input power supply.

FRONT

FIGURE 1.1 Model 1200-04 Front and Rear Panels

1.2 Technical Characteristics

TABLE 1.1 1200-04 IF Processor Specifications*

RX Input Characteristics
Impedance/Return Loss
Frequency
Level Range
1 dB compression
RX Output Characteristics
Output Impedance/RL
Monitor/AGC Out Level
Level Range, Nominal
RX Channel Characteristics
Gain, AGC
Gain Adjustment
Frequency Response
-25 to +45 dB range
0 to -20 dB
$\pm 1.0 \mathrm{~dB}$

TX Input Characteristics

Impedance/Return Loss
Input Level Range
Level Range
TX Output Characteristics
Impedance/Return Loss
Output Level Range/1dB
1dB compression
TX Channel Characteristics
Gain Adjustment
Frequency Response
Group Delay
TX Switch Characteristics
Isolation, Switch off
Isolation, Port to Port
Switch Time
$50 \Omega / 18 \mathrm{~dB}$
50 to 90 MHz
-15 to -95 dBm
$-10 \mathrm{dBm}$
$50 \Omega, 75 \Omega / 18 \mathrm{~dB}$
$-30 \mathrm{dBm},+5,-15 \mathrm{~dB}$
-30 to -50 dBm
$50 \Omega, 75 \Omega / 18 \mathrm{~dB}$
50 to 90 dBm
-20 to +5 dBm
$50 \Omega / 18 \mathrm{~dB}$
+5 to -20 dBm
$+10 \mathrm{dBm}$

0 to -30 dB
$\pm 1.0 \mathrm{~dB}$
5 ns , max.
$\geq 60 \mathrm{~dB}$
$\geq 50 \mathrm{~dB}$, all "ON"
≤ 10 milliseconds

Controls, Indicators

DIG1TX, FDMTX, DIG2TX
LOCAL/REMOTE
OVERRIDE
POWER

Other

IF Connectors
Connector, DC, Control
Size
Power

Green LEDs and SPDT switches Red LED and SPDT switches
Yellow LED
Green LED indicates power is supplied to the unit

TNC (female)
DB9 (female)
19 inch 1 RU chassis x 14.0 " deep
$100-240 \pm 10 \%$ VAC, $47-63 \mathrm{~Hz}, 30$ watts max.

[^0]

Figure 1:2 Model 1200 Block Diagram

1.3 Environmental Use Information

A. Elevated operating ambient temperature - if installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack may be greater than room ambient temperature. Therefore, consideration should be given to Tmra.
B. Reduced air flow - Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised. Additional space between unit may be required.
C. Mechanical loading - Mounting of equipment in a rack should be such that a hazardous condition does not exist due to uneven weight distribution.
D. Circuit Overloading - Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of circuits could have on over current protection and supply wiring. Appropriate consideration of equipment name plate rating should be used, when addressing this concern.
E. Reliable Earthing - Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connection to the Branch (use of power strips).
F. Top Cover - There are no servicable parts inside the product so, the Top Cover should not be removed. If the Top Cover is removed the ground strap and associated screw MUST BE RE-INSTALLED prior to Top Cover screw replacement. FAILURE TO DO this may cause INGRESS and/or EGRESS emission problems.

2.0 Installation

2.1 Mechanical - The 1200-04 consists of one PCB assembly and one power supply housed in a 1 RU (13/4 inch high) by 14 inch deep chassis. An AC power supply provides +15VDC and -15VDC to the PCB. The $1200-04$ can be secured to a rack using the 4 holes on the front panel. Figure 2.1 shows how the 1200-04 is assembled.

FIGURE 2.1 1200-04 Mechanical Assembly
2.2 Rear Panel Input/Output Signals and Controls - Figure 2.2 and Table 2.1 show the input, output. and control connectors on the rear panel.

FIGURE 2.2 1200-04 Rear Panel I/Os and Control

	- 1105 (DB9) Control/Indicator Signals		
PIN	CONTROLS		
1	SELECT DIG1 TX IN	External Closure In	GND/ Open OFF; +15 VDC + +V) ON
2	SELECT FDM TX IN	External Closure In	GND/ Open OFF; +15 VDC(+V) ON
3	SELECT DIG2 TX IN	External Closure In	GND/ Open OFF; $+15 \mathrm{VDC}(+\mathrm{V})$ ON
4	LOCAL Indicator OUT	Indicator Output	GND LOCAL Control; Open REMOTE Control
59	GND	Ground Reference	
6	OVERRIDE IN	Local Override Input	$+15 \mathrm{VDC}(+\mathrm{V})$ overrides LOCAL control and allows for REMOTE control
7	AGC OUT	AGC Voltage	Indicates current AGC gain (see Table 2.2)
8	+V	DC Voltage Reference	+15 VDC

2.3 Front Panel Controls and Indicators - The following are the front panel outputs, controls and indicators.

FIGURE 2.3 1200-04 Front Panel Controls and Indicators

2.4 Operation

2.4.1 Installing and Operating the 1200-04

1.) Install the 1200-04 in the equipment rack.
2.) Connect to signals on the CONTROL connector, J105, as desired (Figure 2.2).
3.) Connect $100-240 \pm 10 \%$ VAC, $47-63 \mathrm{~Hz}$ to AC IN on the back panel (Figure 2.2).
4.) Be sure the DC (power) LED, DS6, is on (Figure 2.3).
5.) Set SW4 for REMOTE or LOCAL operation (Figure 2.3).
6.) Choose the desired TX path(s) either remotely (J105, Figure 2.2) or locally using the front-panel switches (SW1 - SW3, Figure 2.3) and check for proper signal(s) at TX IF MON (J2, Figure 2.3) or TX IF OUT (J104, Figure 2.2) and that the appropriate LED(s) (DS1 - DS3, Figure 2.3) is lit.
7.) Adjust attenuator pots (R1, R2, R3, T1, T2, T3) as needed. Clockwise rotation provides increased output level (full clockwise $=0 \mathrm{~dB}$ atten, full counter-clockwise $=30 \mathrm{~dB}$ atten).
8.) AC Fuse - The fuse is a $5 \mathrm{~mm} \mathrm{X} 20 \mathrm{~mm}, 2 \mathrm{amp}$ slow blow (Type T) and is inserted in the far slot in the drawer below the AC input as shown in Figure 2.4. There is a spare fuse in the near slot. If a fuse continues to open, the power supply is most likely defective.

FIGURE 2.4 Fuse Location and Spare Fuse
2.4.2 AGC voltage relating to Gain - The 1200-04 IF Processor operates over a 0 to -80 dBm input range on the RX IF side. The Automatic Gain Control (AGC) provides a constant $-30 \mathrm{dBm}+5,-15 \mathrm{dBm}$ output RX IF level over the entire input range. Pin 7 of the DB9 control connector, J105, can be monitored to determine the approximate input level (and corresponding gain) in AGC as Table 2.2 shows.

TABLE 2.2 - Approximate AGC Voltage vs Gain and Input Level		
AGC Voltage (pin 7, J105)	AGC Gain	Input Level
-0.2 VDC	-14 dB	-10 dBm
-0.5 VDC	-10 dB	-20 dBm
-1.2 VDC	0 dB	-30 dBm
-1.6 VDC	+10 dB	-40 dBm
-1.8 VDC	+20 dB	-50 dBm
-2.0 VDC	+30 dB	-60 dBm
-2.2 VDC	+40 dB	-70 dBm
-2.3 VDC	+47 dB	-80 dBm
-2.4 VDC	+50 dB	-90 dBm

Cross technologies, inc.

6170 Shiloh Road
Alpharetta, Georgia 30005
(770) 886-8005
FAX (770) 886-7964
Toll Free 888-900-5588
WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com

[^0]: *+10 to +40 degrees C; Specifications subject to change without notice

